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AN INVESTIGATION OF THE VIBRATION CHARACTERISTICS OF PRESSURIZED
THIN-WALLED CIRCULAR CYLINDERS PARTLY FILLED WITH LIQUID

By Joux S, Mixson1?

SUMMARY

Squations are derived for the calenlation of the
natwral frequencies of shell vibration of pressurized,
thin—walled, circular cylinders which are empty,
partly filled, or pdl of liquid. ITn this type of
vibration the aris of the eylinder is wndeformed and
the eross-section shape deforms during the vibration.
The devication follows a Rayleigh-Lagrange proce-
dure, in which erpressions for kivetic and potential
energy are developed in terms of the displacements
of the cylinder, the displacement shapes are assumed,
and Lagrange's equations are applied to give a set of
linear simultaneous equations of motion which, upon
substitution of simple harmonic motion, yidld a fre-
quency determinant.

Also  presented  are experimentally  determined
natural frequencies and mode shapes of two eylinders
having ratios of radius to thickness of 937 and 3,000.
Natural frequencies of both eylinders were deter-
mined for internal pressures up to 8 psig and ratios
of liquid depth to eylinder length from 0 to 1.47.

Comparisons between the theoretical and erperi-
mental frequencies indicate that the equations derived
herein are adequate for prediction of the erperi-
mental frequencies of the eylinders tested.  Both
caleulated and experimental results show that when
the eylinders are greater than half full, their fre-
quencies are less than half of the corresponding
frequencies of the cylinders when empty.  Also, the
damping of a water-filled cylinder was found
experimentally to be less than the damping of the
empty eylinder.

AxDp Rosenrr W, Herr

INTRODUCTION

Thin-walled, unstiffened, cireular evlinders are
presently being used extensively as combination
fuel tanks and primary structure in the design of
liquid-fueled rockets. The need for structural
efliciency, which dictates that the structure be
as light as possible, combined with the presence
of high-energy vibration sources, such as the
rocket engines and boundary layer, has emphasized
the importance of dynamic loading problems for
these thin-walled tanks. OF prime importance
with respect to the dynamie loading problems
are the natural modes and associated natural
frequencies of vibration, which for a booster
vehicle include beam vibrations, shell vibrations,
and fuel sloshing, each ol which can possibly
couple with the others or with the control system.
In this report the vibrations considered are the
shell vibrations (sometimes referred to as “breath-
ing,” “wall,”” or “lobar” vibrations), wherein the
axis of the cvlinder remains undeformed and the
elements of the wall perform harmonic motions
in the axial, radial, and eircumferential directions.

Shell vibration frequencies of thin-walled eyvl-
inders have been calculated by muany authors,
amonyg the first of which were Lord Rayleigh
(ref. 1) and A. E. H. Love (ref. 2). Both Ray-
leigh and Love presented frequency equations for
shells with either infinitely thin walls or an inelastie
middle surface (an imaginary surface located at
midthickness of the shell wall), Baron and Bleich
(ref. 3) extended Rayleigh’s work to include both

t Information presented herein is being offered by Mr. John 8. Mixson in partial fulfillient of the requirements for the degree of Master of Applied

Mechanics, University of Virginia, Charlottesville, Virginia.
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finite wall thickness and middle surface elasticity
in the [requency equation. Reissner (ref. 4)
derived a frequency equation including the effects
of finite wall thickness, middle surface clasticity,
and internal pressure. Berry and Reissner (rel.
5) extended this work to include, in addition, the
effect of an internal compressible fluid. Baron
and Bleich (ref. 6) investigated shell vibrations
of unpressurized eylinders partly filled with liquid
with the ends freely supported at the bottom and
free al the top. Comparisons between caleulated
and experimentally determined [requencies were
presented by Arnold and Warburton (refs. 7 and
8), who investigated vibrations of unpressurized
evlinders with fixed or freely supported ends, and
by Fung, Sechler, and Kaplan (ref. 9), who inves-
tigated  vibrations of internally pressurized
evlinders.  These comparisons showed good agree-
ment between the caleulated and experimentally
determined frequencies.

In this paper, a frequency equation is derived
for shell vibrations of thin-walled cireular evlinders
partly filled with liquid, containing internal
pressure, and having freely supported ends. An
experimental program to determine the natural
frequencies of two thin-walled cylinders having a
variety ol combinations of internal pressure and
water level was also conducted for comparisons
with the theory. The derivation of the frequency
equation is presented first, then the experimental
prograni, and finally, comparisons of the theory
with experiment.

SYMBOLS
a mean radius of cylinder
b depth of liquid
B.@®),0;®), time-dependent cocflicients appear-
D ing in equation (18)
1D Young’s modulus
f frequency of natural vibration, w/2m,
eps
Ta(X) virtual mass factor, %
g aceeleration of gravity
s dumping factor, defined by equa-
tion (56)
shear modulus, 55
h wall thickness
I modified Bessel function of first

kind of order n

AERONAUTICS AND SPACE ADMINISTRATION

1) derivative of [, with respect to its
argument
Jy Bessel function of first kind of

order n

i 4, k, 8 summation indices

K, (s, k), Ks(s) expressions defined by equations
(28) and (29)

L cylinder length

m number of axial half-waves

My (8), mu(s, k) liquid virtual mass coefficient, de-
fined by equations (31) and (32)
or (33) and (34)

n number ol cireumferential waves

n unit  vector normal  to  liquid
boundary
N41 number of terms in series expansion

of displacements

internal pressure

expressions defined by equations
(41) and (42)

radial coordinate

vy
Q(“)r A (Sy k)

.
t time

T kinetic energy

u, v, W displacements of a point on middle

surface In the axial, circumferen-
tial, and radial directions, respec-
tively

amplitude and time-varying part of
displacements

potential energy

velocities of the liquid m radial,
circumferential, and axial direc-
tions, respectively

U9, V.,
Wi(t)
T‘T

Uy, Voy Uz

2y, o height of circumnferential node line
above cylinder bottom (subscripts
1 and 2 denote first and second
node lines, respectively)
2, Y, 2 coordinates with origin on surface
at the base of the eylinder (fig. 2)
Opj roots of the equation
ani\!
Jn’ " 7)' :0
a Jlr-a
. . R
8 thickness-radius parameter, Tod
% shear strain in middle surface
Yoy shear struin ol element
(1—p®) p*?
A frequency parameter, ;),—
: g
€ €, direct strains of eylinder skin ele-

ment
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direct strains in middle surface

€, &

Ky, Kz, Ki2 changes of curvature and twist In
middle surface associated w ith
displacement

s axial wavelength parameter,

(mi-+x )Jma

u Poisson’s ratio

v number of eveles of vibration used
to determine damping

p weight density

o, Oy direct stresses

Try shear stress

¢ angular coordinate
b veloeity potential of liquid
w cireulir frequency of natural vibra-

tion
Subseripts:
f fluid Qiquid and gas)
l liquid
¢ shell

A ot over a quantity indieates differentiation

with respect to time.
THEORY

When a thin-walled evlinder vibrates in 2 shell
mode the axis remains undeformed and the eyvlin-
dor walls deform in a wave pattern as iHustrated
in figure 1. A number of stutionary waves are
formed in cross sections normal to the axis, as
illustrated by the circumferential wave forms, and
in cross sections containing the axis, as lustrated
by the axial wave forms.  Node lines are defined
as in references 7 and 8 by the p()\m()ns ol zero
radiad deflection (tangential deflection is not neces-
sarily zero at these positions) and typical node-
line awrrangements are shown 1n ficure 1(b).
[t hus been shown (ref. 7) that for cach combina-
tion of m (the number of axial half-waves) und »
(the number ol cire aunferentinl waves), there exist
modes of motion and associated
associated with the

three distinet
frequencies.  Tu the mode
lowest Trequeney the motion of an element of the
shell is primarily radial. The frequence oS associ-
ated with the other two modes are large comp: ared
with the radial mode frequency, and the primary
motion of a shell element in these two modes 13
tangent to the middle surface, either axial or cir-
cumferential.  In this analysis only the radial
mode is to be considered; therefore, a mode 18

(a) Cross =ections depieting cireumferential wave forms.
() Node-line patterns.
(¢) Cross sccetions depicting fongitudinal wave forms.

Ficung - "Pypical defleetion patterns of radial shell
vibrations of thin-walled exlinders.

defined by the values of m and n. The frequencies
of the tangential modes are prevented from appear-
ing in the equations derived herein by neglecting
the contribution to the kinetic energy of the tan-
gential motions, both axial and ecireumferential.

A sketeh of a evlinder with the coordinate sys-
tem used in this analysis, together with an element
of the shell, is shown in figure 2. The axis of the
evlinder is vertical so that the liquid depth b is
The axial, cireum-
point on

measured along the length L.
ferential, and radial displacements of a
the middle surface w, r, and w are positive along
the o=, y-, and z-axis, respectively, as shown in
this figure.
DERIVATION OF POTENTIAL ENERGY

The potential energy ol vibration of a thin-

walled evlinder containing internal pressure can
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(a) Cylinder.
(h) Llement.
Ficure 2. - Sketch of eylinder showing coordinate system
and a typieal element of a thin cylindrical shell.

be written as:

f » f f 9 (GI cfr+0'1/ c5y+7',ry p'YzI,)G(/J(]W/’”
—h/2 o

h/2

f f (o, rex oy r6,t 7oy pyn) adaded 2
(1)

—~h/2

The stresses introduced in the first term on the
right of this equation are associated with the
elastic vibratory deflections of the cvlinder as
indicated by the subscript e, whereas those intro-
duced in the second term are due to the internal
fluid pressure, as indieated by the subscript f.
This expression for strain energy negleets any
contribution of stresses acting on the clement in
the direction perpendicular to the middle surface.
The internal pressure and liquid stresses are
assunted to be independent of the strains in the
tank wall; and (rom Hooke's faw, the shell-
elasticity stresses are related to the strains by the
expressions:

X (e-+pe,)

o
] —_—

Ty o=

Mg<5g/+#fr) } 2)

ko
Try c— .)(1 + 7.1’// J

The strains ¢, ¢, and v,, in the element at a dis-
tance z [rom the middle surface of the shell are
related to the middle-surface struins €, &, and ¥
and to the changes of curvature and twist K1y Ke,
and x, by the expressions (ref. 2, p. 529, for
example):

€, € Ky (3)

With the asswmption that the pressure strains
Oz.zy Oy a0 74, are constant across the thickness
of the shell, equations (2) and (3) can now be
substituted into equation (1) and tho right-hand
side integrated over the thickness of the shell to
vield:

20 2y« l—u 2 .
1 :)(1; 2){ f el € +2[£€1€2+—‘2‘*J}/ )(I([.Ir/np

Eh?
24_ TR N
)41_#) f f R 2k Ky

2 L
42 (1 — Wkl (I»(].I'I/¢+}lv{ f (0, s, +0, s
Jo Jo
1o Madade (4)

The first, second, and third integral expressions in
equation (4) represent the contributions to the
strain energy of, respectively, the middle-surface
clasticity, the bending of the finite-thickness shell
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wall, and the internal pressure. The relations
between the middle-surface strains e, e, and ¥
and the displacements of a point on the middle
surface 1, ¢, and w0 to be used arve:

Qu l Ou*)
“a=or 2\ o
19r w1 /0w\? -
“T00e a ! 2a \a;n) Q)
_lonm Dr_i_lr ow ow
T O¢ Or adr Q¢ J

In general, second-order terms involving .m(l v
can also be included (for example, as in ref.

p. 60); however, with % and » assumed snmll in
comparison with w, these terms are neglected.
The expressions relating the changes of curvature
and twist &y, xe, and xz to the displacements are:

o'
Ay
1 o%w
==, o "
B g 0y’ )
1 o%w
M 0rde )

The expressions given by equations (6) neglect the

offects of circumferential displacement on the
changes of curvature and twist, a simplification
suggested by shallow shell theory (ref. 10). When
applied to cylindrical shell vibrations, shallow
shell theory assumes that when the axial node
lines are sufficiently close together, the portion of
the shell between the node lines can be treated as
a flat plate. Thus, as in flat-plate theory, the
tangential displacements are assumed to have no
offect on the changes of curvature, and equations
(6) result. The stresses due to internal pressure
and ligquid are given by:

For 0<a<b

L
I
/)(1 p a (7a)
Oy 1= , (b
Try, f: “
and for bZLa< L,
pa
)
pa (7b)
Tn I g
Try 1= 0

Equations (5) to (7) are now substituted into equation (4) to give the following expression for poten-

tial energy in terms ol the displacements:

. Eh AL AAYNE 1 Jor N 2u du
Vo0 f [(\(5;)_}#&-’(5@*”’,)4_{1 o7

2y O*w o%w
a® drt dg* at

»4{{”‘-@ I+ G+

Ou* 190 w, 1 fowy LA (LA 10n 'u, 1
- . 1.4 —
]+(1 O@ a +2(1'3 <\O¢) }(1{/ il p;(lJ:) [(, (b—) ade « ‘711*

1t should be noted that the second-order terms of
equations (5) have been omitted In the evaluation
of the first integral expression of equation (+),
since their contribution is small compared with
the contribution of the first-order terms.

DERIVATION OF KINETIC ENERGY

When the kinetie
motion is neglected,
eylinder is given by

",4{3;“’/‘ f f Wl g )

energy of the tangential
the kinetie encrgy of the

or l—u ‘1 Ou
d¢ )+7 (

61' 2
p 399 > ] adrde
ou
OI&p) :I adrdo+pa [ f { ad
bu) ] adrde (8)

The kinetic energy of the incompressible, in-
viscid liquid is found from the relation

4 f[ ' s (10)

where the integral is taken over the entire surface

boundary of the liquid, dS is an element of arca of
the liquid surface boundary, n is the outwardly
directed unit vector normal to the liquid boundary,
and ® is a velocity potential funetion which satisfies

‘)(l—u)
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Laplace’s equation

' 100 1 0%, 0%

2F — —_
V=T o o Toe=0 (1)

and the following three boundary conditions:

(1) On the eylindrical surface 7=a, the radial
velocity of the fluid must be equal to the radial
velocity of the shell; thus,

od

T 9
oY (12)

-
Crir=a™

(2) On the bottom of the eylinder the axial fluid
velocity must be zero; thus,

o (13)

(3) On the free surface of the liquid the bound-
ary condition is given by (ref. 11, ch. IX, article
27)

S =gk e+ E ()
where 7 is the displacement of the liquid surface
from its undisturbed position and F(#) is an arbi-
trary function ol time. Since the velocities are
small compared with the other terms, and since
F(#) may be absorbed into the potential ¥, this
condition may be reduced to

od
ot H:‘(m

As stated in reference 6, the contribution of the
surface waves to the determination of the shell
frequencies can be neglected because the liquid
slosh frequencies are comparatively low. There-
fore, for purposes of this paper, the effects of the
surface waves are neglected (9-=0) and the bound-
ary condition on the lree surface is reduced to

(I)‘

o1l (15)

In view of these boundary conditions, the kinetic
energy of the liquid (eq. (10)) can be written

T’__‘),j {j - ((ba@)fr u(l(/qo(]f
._(,'f f ( ‘—) N/@t//' (16)

AERONAUTICS AND SPACE ADMINISTRATION

The determination of @ vequires, from the first
boundary condition, knowledge of the radial veloe-
ity of the shell and will therefore be completed after
the assumed shell displacenients are discussed.

CYLINDER DEFLECTION FUNCTIONS

If expressions for the displacements w, v, and w
are now assumed, the strain and kinetice energies
may be ev: dllhll(‘(l in terms of the Amplltmlm and
Lagrange’s equation may be used to give a lre-
quencey equation.  The expressions assumed for
u, v, and w are:

N A
U=08 771‘»02 U, (t) cos —I—

r=sin mpY‘ V() sin >\z (17)
§=0

W= 08 'W’Z W.(t) sin if
s=1

These deflection functions are the normal modes

for the exlinder without liquid and will be coupled
in the equations of motion by the hyvdrodynamic
forces.  Each term of the series satisfies end con-
ditions known as freely supported, in which the
evlinder ends are constrained to remain civeular
(radial deflection at the ends is zero) but no con-
straint is placed on the slope at the ends.  This
particular form of the sine and cosine series was
chosen as a convenient way to obtain approxi-
mations to the higher axial modes without in-
creasing the size of the frequency determinant. (It
is shown subsequently that the frequency determi-
nant is 3(N4-1) terms by 3(N-+1) terms.)  For
empty or liquid-filled exlinders it is usual to take
only the first term of the expressions for #, #, and
w; that is, N=0,

FLUID POTENTIAL FUNCTION

The kinetie energy of the liquid can now be
evaluated from the displacements given by equa-
tion (17).  The velocity potential satisfving
Laplace’s equation, V=0, is

b=cos ney > B,(1)/, (Z‘\C) sin Aot
8=0 LA a

+3 (1) sinh “'“ LDt (osha"’"l:l, ?‘"f )}
j=1 (4 .
(18)

where B,(1), (1), D), and a,; are to bhe de-
termined  from  satisfaction of the boundary
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.. A o,
conditions, and I,,( ) and J,,( " ) are
u a

Bessel funetions of the first kind, modified and
unmodified, respeetively, This potential funetion
can be obtained by disearding the terms which are
inconzistent with the boundary conditions from
Luplice’s equation in
evliindrieal coordinates. The first boundary con-
dition (eq. (12)) will be satisfied if

the general solution of

I///
o, (") ., (1)
or rea
and
N or, (M ’ v
;;): B.(t) or . <in

N "
=—>2 W,(1) sin ?‘flf (20)

8=l

Equation” (19) is satisfied by the proper choice of
a,;, and equation (20) is satistied with

—2aW i)

B(th=_, . _t
( ) )\.\'llnfl(\)\x) _ii—[/z—‘fl(}\m)J

(21)

Substitution of d)‘(vq. (18)) into the second bound-
ary condition (eq. (13)) vields the following

Upon substitution of & (eq. (18))
Is obtained.

"(l

N
Di(t)—=
) a,,j<| - )J,z(a,“)g

The constunt s associated with the initial motion
of the fluid and for purposes of
can be neglected.  The potential function & is
now written in the form

this analysis

N ™ )\\_J.
d=1c0s ng > I,l ) ST
3=0 [

1

+22 [5-:('\'../') sinh ¥
j=1 «

+84(x, /) cosh “;;‘”] J, (—‘*5"") }Wm (26)

661671—63——2

. <a,,j sin

equation for the determination of €7(#):

(()511,11")7:”
o«

(22)

N A‘¢)" e o
> non ()R o,

§=0
For evaluation of €,(#), equation (22) is multiplied
o, . .
through by J,,( " )r/l and integrated  with

respeet to 2 from r— 0 to r==a; use is then made
of the orthogonality relation for Bessel functions

*a g . g
I r]n 'am") ’]n ((}"U”' ) I’(ll':“
Jo a . a

« ol ry
f ']”( i ) ]"< nj )/'(//‘:‘)"( ]'—")l]” (LY,,/
JO . B N ” - N anj

(i)
23)

(7]

and the following integral

‘o A2 AV I, (N )J,,(a,,,
S, G (B )=

This procedure yields the lollowing expression
for (,():

‘)(I N )\ Ii'
()= . ,
jU) ( 2 pomy (a") +)\ 2) (24)
o, 1——).1,, (@)
. a!u

into the third boundary condition (eq. (15)), an expression for 17,(f)
Integration of this expression with respect to time yields the following expression for 12;(1):

/ .
A " sinh ¢ ) W (f
! i -+ Constant 25)
(@, 2N cosh
where
-«
8.(s)= N 1,, )
. 2aX,
Bals, J) =2 e e
Xy, (1 —a,,f ) !]u(\anj) (_CY,,ff*)\_f’

W/ b
20 a,; sin T — X, sinh 2
" a «a

E ( 71) ) B
{ Gy j (l ) Jn(an/) (anJ ‘+ A ) (()\Il -

aru g
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DERIVATION OF FREQUENCY EQUATIONS

Upon substitution of u, », and w as given by equations (17) into equation (8), the following expres-
sion for potential energy is obtmned

V= 40“5“ E{ NS ()2 03 (8) = W (6 P— 26T s (8 [V o () — W o ()]

2 VOl OF+ 0 0 A B (e ) W1

Lgﬁ {;5 @aﬁ <b> [K (W, (1)? +ZK (s, WL (W, (t>:|}

where
1— cos (A +M) - 1— cos ()\s—)\k)é
K, (s, b)=|1—2 T—" —|1-2— « (28)
e Ns+2p)? o Ae—Ap)®
1—cos stb
K,(s)=1-2 <)>\ b) (29)
(m+s)7ra
A="
A= (,m +Av)__7£q

pl

The potential function & (eq. (26)) is now substituted into equation (16) to obtain the kinetic
energy of the liquid. This result is combined with the kinetic energy of the shell, determined by sub-
stitution of the displacements (eq. (17)) into equation (9). The total kinetic energy thus obtained is
given by

T— ’”’"‘“ z {[ +‘““ m,](s):IIV ()2 +”“’b i _— k)m(t)ﬁ;(t)} 30)
where
270 27.b

arfn(A)?% sin =——
771::1(-9)=fn(>‘s) 1— 5 ba' + 25 a l:l—ln_l(;\S)O{")tl()\S)'j]

- 4(1;{2)\ a,; sin *7_*_[“”]2 sin (>\ ) ] sinh anajb}
__Z -~

. , — ,,,b,,,, e (31)
=t ba,; ( 1— ) (a,,, +A2) cosh - %ni?
< a’?)
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sin (A, —N\g) b SN (A =-Ay) b
a a

me(s, k) =fu\) | === gy
(N—N) - (NN
a «
. . N D .
(I)‘lc'\.v_ sin 71,7 oS '(‘ijn()\.w)_/u(_)\k)[ n— l()‘ )Invl AX n 1()“)[71 #1(>‘ )I
L T N L Sy (S
b 4
B PR R
T o
Jj=1 A 2
’ (1 an/ ) (0(,,, + )\ ) (allj +)‘l )
4a. I: i ()\ sm —H\L sin —)—I— a,u sin Z\db sin Z\El—)—)\ M) sinh "’b:l
+- e — S (32)
ba"} (1'_'0(—__) (arljﬁ+>‘s-) ( nj +)‘A (O“h
. nj
and Equations of motion.—Inasmuch as (7(t), V(t),
() = 1,0 and W) are independent variables, they may
il AL be taken as generalized eoordinates and the La-

An approximate analysis of the liquid kinetic
energy is given in the appendix and leads to the
following expressions for m, {~) and mu(~, k)
N
sin

a

mn (=LY | 1=y (33)

a
. b
sin (A,—Ny) -~ 8In ()\ T)\ﬂ -
M (5 B) =T, (A o i b
N (AyEN) 2
a a
(34)
For convenience the quantities my,(s) and
me(s, k) are termed virtual mass coefficients; the
expressions given by equations (31) and (32) are
referred to as “exact” virtual mass cocfficients;
whereas the expressions given by equations (33)
and (34) are referred to as approximate virtual
mass cocfficients.  Frequencies have been ealcu-
lated both by using equations (31) and (32) and
by using equations (33) and (34), and compari-
sons are shown in subsequent sections of this
report.

grange cquation applied. A general form of the
equations of motion can be obtained if deriva-
tives are taken of the general term of the sum-
mations indieated I equations (27) and (30).
The equations of motion are obtained by the
application of Lagrange’s equations:

d[ a’l’

= =0
d a( (f)]-'_b( (1) W
d[ oT oV

ai Lov, (;5:|+O"x(f5_()

a
o

~

Y

o
o)
[

S

an s({)]+0” (t J

~

The resulting equations of motion become, with
the assumption of simple harmonic  motion

W () = — oW, (1):
( z+—f 72

--n li_# )\Sle"s(t)+(129+1*;f )\32> Ve(@)y—nW,(t)=0
/ (37)

Hu

AV (O A+ (1) =0
(36)
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M) —nV () + { 14+ BN 4n?)?

—upa (N 1—u p L.
+ 9 ](,/ ( -’ )—I-*'; T z’ ( )'l‘
Al: +3i‘5' s \)]}Il'm
| — 7 p,/; (I 2 -
+ R ( )ZA s, YW ()
- h s
_ p’(I’l 1 -
A Y ‘?2’:12 [mica(s, k) 4= mi (b, WL (O =
LFEs
(38)
BN TN |+ u
A+ o HP o 9 o uAg ] 0
" ! 2 Ay oni4- —n 0 0
Ay — 710 0 0
0 0 0 A Hae —n];”)\]
0 0 0 #nléﬂ}\, nur‘;‘*xl?
0 0 w(l, 0) e —n
0 O O 0 0
0 0 0 [}] [§]
[ 0 0 (N, O 0 0
where
. a
g =14+ +n“)1+ 2’“ C?;/ ,‘) + >+,
ol a
0 (s, A)* "’ 9 (71 >K1(x

AERONAUTICS AND SPACE

ADMINISTRATION
where

(1= i) pott’es”

A== .
1y

(39)

It ean be seen from the strain and Kinetie energy
expressions (eqs. (27) and (30)) that there will be
(N4+1) terms in the summations, leading to
3(N-+1) equations of motion, of which (N41)
equations are ol the form of equation (36), an-
other (N+41) equation of the lorm of equation (37),
and the remaining (N4-1) equations are of the

form of equation (38). The matrix equation
representing these 3(N-+1) equations is
T
0 0 0 0 U,
0 o 0 0 0 Va
w0, 1 ... 0 0 @0, N) w,
BAL L 0 {1 0 (S
—n 0 0 0 L
g(1) 4] 0 g (1, . * W, r =0
0 )\v:’%—li—’fn? -n]'}l‘)\‘- Ax Uy
e Ay 9 A N HAN /
Tiu .
0 ~11,'2-)\Av u—}— v —n Vi
(N, 1) ... HAN —n g(Ny ] U ll'NJ
(40
—upl. a (b . P (lb
5 9 ah ( ) K (6) —A [1 + " m a{s) (41)
pith 1 .
'” 5 [maa(s, k) -+ meulk, o)) (42)

The frequency determinant yielding N natural [requencies is formed from the elements of the charncter-

istic matrix of equation (40).

The frequency of principal interest is the lowest frequency, and the

higher frequencies introduced by inclusion of several terms in the displacement functions are neglected.
Several examples are now considered.

Frequency equation for N=0.—If N is set equal to zero, only the first term of the series in equation
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(17) 1s retained and the displacement relations reduce to

N
’ i
wu—1"y(f) cos g cos I

. . mar ,
r—V () sin ne =sin - R ¢ {4

1.

. .oy
w=1 old) oS T st - A

J

The frequeney determinant, formed from the first three elements of the first three rows of equation
(400, 15

‘ 1— 1+ !
N+ ‘)—lf n? —n ‘)—Mr o ,u)\“i
- , 11— . =0 44
"= i—“ Ao n- o - Ao” -—n (+4)
l whg — g0y

where

. U, = N — La b\, . . . _
g0 =gty B0 (e ) B (G Y e —a [’ ! Z'«Z’/), ""‘“”] (5)

Equation (44) can be expanded and combined with equation (45) to give the following relatively
simple expression lor the frequency factor A; thus,

R R i Canat D a7 M S AL )
1+Zizll’; m e (0) |
where
1—cos 21’7])
K(0)=1—2] - s (47)

')

The first three terms of the numerator of equation (46) represent the contribution to the frequency
of middle surface elasticity, wall bending, and internal pressure, respectively. The fourth term of the
numerator and the second term of the denominator represent, respectively, the contributions to fre-
quency of hydrostatic pressure of the liquid and the eflective mass of the liquid.  When the liquid
depth b is zero, equation (46) reduces to

C(T—=pf)A
(i)

‘ , o (1— . A2 .
aew R (g ) (4%)

Equation (48) has been derived and discussed previously (refs. 4 and 9) using diflerent
derivation proeedures.
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When values of m,(0) and K5(0) from equations (31) and (47) are substituted into equation (46) and
the liquid depth & is equal to the length £, equation (46) becones

))\u 9 M)Z’H ?\n (1 ﬂ) Pt [1’1
O(,”[/ (49)
Pz”;/[n()\n) 4p,0° )\0 tanh == (l
L L R Ty .
Ay <1'—‘ 2) (anj2+}\02)2
anj E

Equation (49) is quite similar to a frequency equation derived in reference 5. The equation of reference
5, when the fluid is considered to be incompressible, reduces to equation (49) with the fourth term of the
numerator and the third term of the denominator deleted. These terms represent, respectively, the
effect of the hydrostatic pressure of the liquid, and an effect of finite cylinder length.  Neither effect
was considered in reference 5.

Frequency equation for N==1. -If N=1, two terms of the series in the displacement expressions
are retained and the displacements are given by

Y] 3
L 170t) cos m[m +L71 (1) cos (m jL]—!)m—l— CON N
r=| Vo(t) sin '?17” 4V () sin - (m+1 sin ne » (50)
s LoommE (m#l)r.r"
w=| Wy(t) sin - — +H HOE =y |eos e
— - — J

The frequeney determinant is now formed from the first six rows of the first six columns of the square
matrix of equation (40) and is given by

o\ +l_“ wo—n »lv“f N 0 0 0
. _
*nr] 5 D% nz—}—'lr o "f)\o2 —n 0 0 0
7 -1 q(0) 0 0 (0, 1)
0 q ] | _[1( y 0 (51)
0 0 0 N fi‘” NN
0 0 0 ! f‘f N SN -
0 0 (1,0 uN —n q(1) |

In this equation ¢(0) is given by equation (45) and
at =iy E O (M) 1R el (B Yy s ‘””b 1 (2
(1) = ) o o o G \p) el - mall) 52)

a1, 0)= 1‘) # ”f)l‘ (’f/ » 2( ) K.(1,0)—A "Z’I’} (s (1, 0) 4+, (0, 1)] (53)
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1—cos (Zm—+1) Fb

2 - l,i
- y /N
[(2m+1) /,] )I

1—cos Zrl
— 1—2- : (54)

(7)

9
1 —cos (m--1) 77[?

K,(1)=1-2 (35)

9 oy
|:(m +1) HZ])-:I

With the use of equations (45) and (52) to (55),
equation (51) can be solved for the frequency
parameter A by using known methods; the
required quantities are the shell dimensions (a,
b, and L), shell muterial (£, u, und p.), liquid
density and depth (p; and 8), and the mode shape
(defined hy m and 2. The value of A from the
solution of equation (46) or (H1) ean be substi-
tuted into equation (39) 1o give the frequency of
the vibration. As illustrated in these examples,
any number ol terms of the series in the displace-
ment expressions (eq. (17)) may be taken and the
resulting 3(N-4-1) by 3(N4-1) determinant may
be solved for the frequency.

K,(1,0) =4 1—

\

EXPERIMENTS

GENERAL REMARKS

Nuatural frequencies and node lines of two thin-
walled evlinders were determined experimentally
for comparison with the caleulated results. A few
mode shapes and some values of damping were
also determined.  The ratios ol the eylinder
radius to the wall thickness were 937 and 3,000;
the ends were attached to relatively rigid strue-
tures and were therelore considered to be fixed.
The natural frequencies and node lines were
determined with internal pressures up to 8 psig
and Tor ratios ol water depth to eylinder length
biL from 0 to 1.47. The mode shapes were
determined for values ol b/L of 0.25 and 0.50, and
the damping was determined with the exvlinder
cmpty and filled with water.

APPARATUS

Cylinders.-—The physical characteristics of the
two thin-walled, unstiffened, circular cylinders
used in these tests are given in the following table:

Parameter Cylinder1  Cylinder 2

Material o _ . o ... Aluminum  Stecl
(2014-T6)  (stainless)
Weight density, p, Ib/ew in._____ 0. 10 0. 28
Young's modulus, £, Ib/sqin._ . 10X 108 30 10°%
Poisson’s ratio, pweo oo ..__. 0. 33 Q0. 30
Length, Loino. o _______.__ 286 22.0
Mean radius, @, in. ... _______ 15. 0 12.0
Skin thickness, by in, o _______ 0. 016 0. 004
Radius-thickness ratio, @/h._____ 937 3, 000
Radius-length ratio, a/L__.______ 0. 525 0. 516

Photographs of the eylinders in the testing position
are shown in figure 3. The ends of the eylinders
were riveted to l-inch by 1l-inch by X-inch
aluminum angle rings, which held the eylinder
ends at essentially a zero deflection and zero slope
condition. The eylinders were closed at the top
by fiberglass domes and at the bottom by alumi-
num cones (not visible in figure).  IFittings for
pressurization and for water filling and draining
were located on the domes and on the cones.

Shaker.——.An alternating force for excitation of
the evlinders was provided by an air shaker such
as deseribed in reference 12, The shaker output is
basically a jet of air which 1s mterrupted by
teeth on a rotating disk.  The magnitude of the
alternating foree is controlled by the pressure of
the air fed to the jet, and the frequency of the
force is controlled by the speed ol rotation and
the number of teeth on the disk.  This type of
shaker was selected beeause it provided an alter-
nating foree without adding a large concentrated
mass to the model.

TEST PROCEDURE

Frequencies and node lines.—The test setup
is shown in figure 3. The shaker was placed in the
position expected 1o give maximunm response of
the evlinder in the desired mode.  For instancee,
when the evlinder was empty and it was desired
1o exeite the first axial mode (n—1), the shaker
was placed midway between the ends of the
evlinder; when the second axial mode (m=2) was
desired the shaker was placed at a distance of
about one-fourth of the length f{rom one end.
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(a) Cylinder 1.

Frovre 3. - View of test evlinders and test setup.,

The circumferential position of the shaker did
not appear to have any cffect on the response.

With the shaker in position and the output foree
constant, the applied exeitation frequency was
varied until & maximum response was obtained.
Maximum response was identified by touching the
cylinder lightly with the fingertips while varying
the frequency of the applied force. The mode was
then identified by locating the node lines, which,
in this case, are positions of little or no radial
motion.  (The tangential motions are not
necessarily zero at these nodes.)  The node lines
were also identified by touch. When the fingertips
were moved along the length or around the
circumference of the cylinder, the positions of
smallest amplitude, in most cases, could be
casily felt, and the number of node lines
determined. Touching the eylinder lightly did
not appear to change appreciably the wnplitude
of the response of eylinder 1 under any condition,
nor of cylinder 2 when it was pressurized or
contained liquid. When cylinder 2 was empty and
unpressurized, however, it was not possible to
identify the natural modes or frequencies because
of the initial imperfections and local flexibility of
this very thin cylinder.

AERONAUTICS AND SPACE ADMINISTRATION

(by Cylinder 2.

Mode shapes. —A miniature accelerometer
(weight, 0.14 oz) was used to determine axial
mode shapes. With the eylinder vibrating in a
resonant condition the accelerometer was attached
to the eylinder wall with double-backed tape, and
the output was read from a voltmeter. This
reading was tuken with the accelerometer attached
al several points along the cylinder length, and
all the readings for that mode were divided by
the largest reading to give a normalized mode
shape.  The accelerometer output was fed 1o an
amplifier, then to a band-pass filter to remove
unwanted harmonies, and finally to a root-mean-
square voltmeter, which indicated the amplitude
of the vibration.

Damping. Damping data were obtained only
on eylinder 1 (a/h=937); the procedure for
obtaining the data was as follows. The cylinder
was forced to vibrate in a resonant condition and
then the shaker was shut off as suddenly as possible
by closing the air supply valve. The damping
measurements were obtained from the output of
the miniature aceclerometer attached to  the
eylinder wall, the output being recorded on an
oscillograph. A smooth curve was faired through
the peaks of the decaying response and the
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damping factor was determined from the relation:

1 U,
g,= log, — 56
Jl — e w ( )

where

u, amplitude at time ¢
w, . amplitude v eyeles later
(o
7
f natural frequency of vibration

RESULTS

Frequencies.—The experimentally determined
natural frequencies are presented in tables Tand 11
and are discussed in conjunction with the theory
in the subsequent seetion “Comparison of Theo-
retical and Experimental Frequeneies.”

Mode shapes.——The experimentally determined
mode data are presented in tables ITT and IV and
in figures 4 and 5. Experimental axial mode
shapes of cyvlinder 2 for an internal pressure of
8 psig are shown in figure 4 for m=1, b/1.=0.25,
and for m=2, b/L=0.50 at several values of u.
This figure shows the mode shapes to be non-
symmetrical, with the Iargest amplitudes occurring
below the water line.  The results show further
that the mode shapes vary considerably with the
value of #.  For the smaller values of n the ampli-
tude is approximately the same both below and
above the water line, but as n increases, the relative
amplitude above the water line decreases until at
the largest. values of n shown, the amplitude above
the water line is negligible.

Also of interest with respeet to the modes is the
position of the circumferential node line. In
figure 4(b), (m=2) the circumferential node line
(defined by the position of zero relative amplitude)
is shown to be al about one-half the liquid depth
for all values of n. ‘The variation with internal
pressure of the ratio of the circumferential node-
line heights above the tank bottom wy and x; to
the water depth b is shown in figure 5. This
figure shows that, in general, the node lines are
about evenly distributed over the water depth;
when m=2 the node-line height », is about half
of the water depth, and when m=:3 the node-line
heights x; and 2, ave about one-third and two-thirds
of the water depth, respectively.  The effect of an

661671—63——3

increase of the internal pressure is to decrease
slightly both the seatter and the value of the ratio
of node-line height to water depth.

Damping. It was expected that liquid-filled
eylinders would have more relative damping than
empty evlinders so that the resonant peaks would
be more difficult to distinguish and the decay of
the vibration would be more rapid when the
exeiting foree was removed; however, the experi-
mental results did not show this to be the case.
On the contrary, the modes and frequencies of the
liquid-filled eylinders were just as casy to excite
and identify as those of the empty cylinder. A
limited number of damping measurements were
made on ceylinder 1 at pressures of 1, 4, and 8
psig with the eylinder both empty and water
filled.  (The mode shapes at which the damping
was determined were not identified.)  The result-
ing averages of the damping factors obtained were
0.005 and 0.002 for the empty and water-filled
evlinder, respeetively.  Thus, these values -
dieate that the damping deercased with the addi-
tion of the water.

Tangential and symmetric modes. - During the
experiments it was found that the only modes
whieh could be excited were the radial shell modes.
The high-frequency axial and tangential modes
discussed in reference 7 were never observed.
An attempt was made to excite longitudinal
vibrations such as those which might be experi-
enced by a liquid-fueled rocket under the transient
longitudinal loads at lift-off. In this mode the
shell is thought to expand and contract symmetri-
ally while the fluid center of gravity moves
vertieally.  Several shaker orientations were used,
but this mode could not be exeited with the eyl-
inders and test equipment available.

With the evlinder full of water a mode which
appeared to be symmetrical was excited; that is,
the amplitude appeared to be the same at all
points around the circumference. This amplitude
was observed visually on a thread glued around a
circumference of the evlinder. However, when
the thread was illuminated by the light from a
Strobotae, the vibration was found to consist of a
series of waves traveling at high speed around the
evlinder circumference. 1t was then determined
that this “traveling wave” phenomenon occeurred
in the region of maximum response of a given
mode: at frequencies on either side of this region
the waves were stationary.
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Ficure 4.—Normalized axial vibration mode shapes,
Cylinder 2; a/h=:3,000; p==8 psig.

Multiple response.—An interesting phenomenon
was observed during tests of the steel cylinder
2 (a/h=13,000) partly filled with water. In a few
cases, two distinet tones could be heard when the
cylinder was driven at a particular frequency.
When the obscrver listened to the response with
the ear very close to the cylinder, one tone was
determined to come from the part of the e¢vlinder
above the water line and the other tone from the
purt below the water line.  Further investigation
showed that each of the two sections of the cvl-
inder, above und below the water line, could be
made to respond relatively independent of the
other; that is, the maximum amplitude could be
made to occur either above or below the water
line. Figure 6 shows the minimum resonant
frequency of each section of the cylinder plotted
as a function of water depth for several values of
internal pressure.  For the minimum frequency
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Fraure 5. - Kxperimental location of circumferential node
lines with respeet to water depth as function of internal
pressure for random values of n.  Cylinder 2; a/h=
3,000.

the measured value of m was always 1, but the
value of n varied with the water depth. (These
data are also presented in table V.) The figure
shows that as water depth increases, the frequeney
of the section below the water line decreases, but
the frequency of the section above the water line
increases sharply, as could be expected from the
decreasing length of the unfilled part of the
cylinder. It ¢an be seen that for some combina-
tion of internal pressure and water depth there
can be a mode of the lower section which has a
frequency that is an even multiple of the {re-
quency ol a mode of the upper section. In this
case both modes may be excited by the same driv-
ing frequency, as was observed in the tests.
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TABLLE 1V

MEASURLED LOCATIONS OF CIRCUMFERENTIAL

NODE LINES—CYLINDILR 2

(a) m=2
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COMPARISON OF THEORETICAL AND
EXPERIMENTAL FREQUENCIES

EMPTY CYLINDERS

Unpressurized. —Theoretical and experimental
variations of natural frequency with the number
of circumflerential waves n of evlinder 1, empty
and unpressurized, are shown in figure 7. The
theoretical [requencies for [reely supported ends
were caleulated by use of equation (48). For
fixed enuds, equation (48) was used in conjunction
with a correction procedure developed in reference
8. In reference 8, it is shown that the equations
for freely supported ends can be used to predict
fixed-end frequencies provided the axial wave-
Himd

' is replaced by an equiva-
(m+0.3)ra It

length factor A=

lent axial wavelength factor ,

4

appears reasonable, therefore, to modify equation

(48) in a similar manner to account for fixed ends.

A comparison of the frequencies caleulated by
equation (48) with those ealeulated by the method
of reference § is presented in table VI in order to
verify  that equation (48) with the correction
procedure of reference 8 may be used to prediet
The

natural frequencies ol evlinder 1 for several

frequencies of eylinders with fixed ends.

values of m and n are presented for freely supported
ends in part (a) of table VI, and for fixed cnds
in part (b) of table VI. Table VI shows that the
frequencies caleulated by use of cquation (48)
are in close agreement with those caleulated by
the methods of reference 8 for both freely sup-
ported ends and for fixed ends. It can be con-
cluded, therefore, that the cequivalent wave-
length factor A, can be used in equation (48) to
saleulate fixed-end frequencies.
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TABLI V

MINIMUM NATURAL FREQUENCIES AS A
FUNCTION OF WATER LEVEL

[Cylinder 2; m - 1]

[ Frequeney f, eps, for p=:
b/ L [ |
0 05 1.0 20 | 40 8.0
| psig psig pRig | prig psig
i |
Mujor response below water level
| | ‘

0 L76 ] 206 256 312 1 363 10
. 063 N 204 255 302 . 351 400
000 |75 T
. 100 R BT 5 227 | 256 300 340
120 7% O O
125 B ) 193 216 236 258
. 136 VAL - [ [P
L157 67 oo -

. 180 1) I L . .

. 200 o 110 124 138 148

L7 47 B
. 250 P 90 104 17 127 1-t0
. 333 34 68 st 10 101 110
. 500 30 17 1 53 ‘ 62 60 T
. 625 28 41 4D % I Y S 63
L7550 27 38 1 4L | 46 o521 58
. 822 249 o : Lo -

L 910 30 e Ll

1. 00 30 36 300 42 47 5l

Mujor respons=e above waler level

0 [ ’ 206 312 363 110
L0631 L] 206 321 303 R
J125 | Co_C 210 SRR 390 1)
L2a0 T D233 373 4330 48D
J33% 4 L. 253 403 470 | 518
. H00 o305 A96 {7
L6250 Lo 380 YL - -

The theoretical fixed-cnd frequencies shown in
figure 7 were caleulated by using the equivalent
wavelength factor N, in equation (48).  Figure 7
shows good overall agreement between the expori-
mental frequencies, which were obtained with
fixed ends, and the theoretical fixed-end frequen-
cies. This figure also shows the unusual variation
of Irequeney with n peculiar to evlindrieal shells;
that is, the lowest frequeney does not oceur with
the simplest nodal pattern.  In this case the
lowest [requencey occurs with e 1 oand w210,
Comparison between the lrequencies caleulated
for the freely supported evlinder and the fixed-
end evlinder for a given value of wme shows [re-
quencies for the fixed-end configuration to he
higher by as mueh as 28 pereent in the minimum

400

350 /

TN A

cps

"ro

8]

Q
/
[w]

n

Q

O
—~

E xperiment

/!
{fixed ends) m
/9/ o] !
150 o] 2
= 3

100 \\— e

Natural frequency, f

Treory (eg.(48))
{One — term approximation)

50 —— —— ——  Freely supported ends
Fixed ends
I | (with correchon)
0 a E 12 6 20 24

Number of circumferenticl waves , »

Fraure 7. -Theoretical and experimental variation of nat-
ural frequencey of an empty, unpressurized evlinder with
the numhber of circumferential waves . Cylinder 1;
alh -037.

frequency area; however, small increases of n
reduce this difference to less than 5 percent.
Pressurized. -Theoretical  and  experimental
variations of the natural frequencies of evlinders
1 and 2 with the number of circumferential waves
noare presented in figure 8 for imternal pressures
up to 8 psig.  The theoretical frequeneies shown
in this figure were caleulated from equation (48)
with ends ussumed to be freely supported since
no theory is available for pressurized exlinders
having  fixed ends. The end  conditions  are
expected to have only a small effeet on frequencies
for values of » above the » Tor minimum fre-
queney. For values of 1 above the »# for minirmum
frequency, the theoretical and experimental fre-
quencies agree well, the theoretical frequencies
heing high by as much as 15 pereent but usually
high' by less than 10 percent. The results in
ficure 8 indieate thuat, for values of » above n
for mmimum frequency, equation (48) adequately
predicts the natural lrequencies of empty, pres-
surized ceyvlinders.  This figure shows also that
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TABLE VI
COMPARISON OF THE FREQUENCTIES CALCULA-
TED FOR CYLINDER 1 BY Usk OF EQUATION
(487 AND THE EQUATIONS OF REFERENCE 8
B ) n \
Frequeney £, eps, enlenlited by
Ref. 8

Iz Eq. Refo 8§ K. }R(*f.Hj I
(1R) ST U8

o e 2

(a} YTreely supported ends; A=

7 s 02 5. 01
h O6. 280 G6, 36, 306, 83 307, 91 .
G KK 47 8RUAS, 2540 38255, 67 . : I

10 |9, OR &Y. 16 217 8221911 . _.

11 95. 9 96, 05 1930 84 195, 06 |
12107, 13107, 41 18033 181,48 323, 58326, 14
1S SERUR PITAGY 17682 200 5T 2096, 97
T 138 33138970 17845 179, 60 275, 67 277, 494
1617759 178,70 2000 62 202, 02 263, 66,265, 84
18 22323224, 90, 237,92 230, 76 278, 79281, 11
20 27

C68 2T6, 90 285,25 287, 66 313, 06315, 81

(e +0.3)

(h) Fixed ends; N, I

7] 182,27 182,
8| 147, 14147,
9| 126, 101126,

10| 115, 96!116. 36

11| 114, 56/114. 96! 23¢ 37

121 119 07|120. 41| 217. 732140, 29 374 43377, 47

13 ] ... oo | 205, 64207, 10 3387234157

14 | 144 731145, 45 202, 01,203, 450 313. 59316, 28

16 | 181, 27 182, 43| 214 92216, 50, 200, 63293, 13

18 | 225, 71227, 42| 246. 90:24K. 851 297, 36299, 4

20 | 276. 61.278. 93] 201, 49203, 85 326. 02[328. 83
|

the internal pressure has a large effect on natural
frequency; an increase of pressure from 1 psig
to 8 psig results in a frequency inerease lor
evlinder 2 from about 271 ¢ps to about 712 cps
at n=10.
PARTLY LIQUID-FILLED CYLINDERS

Theoretieal  and variations of
natural frequeney with liquid depth are shown
for m==1 and several values of » in figure 9 for
evlinder 1 (p=0) and in figure 10 for eylinder
2 (p==0.5, 1, 2, 4, and 8 psig). Four theoretical
curves are shown in these figures, all ealeulated
on the assumption that the ends are freely sup-
ported. The first was calculated from equation
(46), which was derived by using a single term
of the displacement series, and the exact virtual

experimental

AERONAUTICS AND SPACE ADMINISTRATION

mass expression (eqs. (31) and (32)); the second
was caleulated also from equation (46), but with
the approximate virtual-mass expressions  {egs.
33) and (34)). The third curve was caleulated
from equation (31) with two terms of the dis-
placement series and  the approximate virtual-
mass expressions; and the fourth curve, which is
shown only in figure 9 for n=18, was calculated
ronr equation (A1) with two terms for the dis-
placement  series and  the  exact virtual-mass
CXPressions.

Figures 9 and 10 show that all theoretieal
curves give the swme frequencies for the empty
condition, b/L 0, and for the nearly Tull condi-
tion, b/L.=0.7 to b/L.=1.0. The theoretical and
experimental frequencies are in close agreement
i these ranges of b/, exeept for some of the
smaller vadues of #, where the disagreement can
he attributed 1o the difference  between  the
experimental and  theoretical end  conditions.
The use of either expression for virtual muass in
equation (46), which used a single-term displace-
ment, vields resulis which agree fairly well with
the experimental frequencies at small values of
n, as shown by figures 9 and 10, but as » increases
these theoretical frequencies become higher than
the experimental frequencies in the range of
b/1. [rom about 0.1 to about 0.7. The reason
for this result can be explained by comparison of
the theoretical with the experimental mode
shapes.  For a one-term expansion the theoretical
axial mode shape (eq. (43)) is svmmetrieal with
respect to a point midway between the eyvhinder
ends, but the experimental axial mode shape as
shown by figure 4 is nonsymmetrical and the
degree of nonsymmetry increases with increasing
values of #. Thus, the higher theoretical fre-
quencies are caused by the constraint of symmetry,
which is not present in the physical system.

The use of two terms of the displacement series
(eq. (50)) relaxes the syvmmetry constraint and
results in lower theoretical frequencies as shown
by the third theoretical curve in figures 9 and 10.
This curve is shown to be in good agreement with
the experimental data.  In a few cases, for instance
for some of the large values of n and small values
of /L, the curve given by equation (51) is slightly
high, indicating that more relaxation of the
symmetry constraint must be provided; that is, a
third term must be included in the displacement
series.
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The results shown in figures 9 and 10 indicate
that equation (46) (the [requeney equation for a
one-term displacement) can be used to calculate
frequencies for /L from 0 to about 0.05 and from
about 0.7 to 1.0. For the range of b//, from
0.05 to 0.70 equation (46) gives only a general
idea of the variation of frequency with b/L; and
if an acceurate caleulation of frequency is desired,
the two-term representation of the displacement
(eq.  (51)) should be wused. I even greater
accuracy 18 desived, the general equation (eq.
(40)) can be used to obtain a particular frequency
equation for any desired number of terms of the
displacement series.  The results presented in
figures 9 and 10 also show that the accuracy
obtained by use of either the exact or approximate
representation for virtual mass is essentially the
same,

LIQUID-FILLED CYLINDERS

Theoretical and  experimental  variations of
natural {requency with the number of circum-
ferential waves » are shown in figure 11 for
Lhiquid-filled evlinders, one axial wave (m=1),
and for several values of internal pressure.  The
theoretical curves in this figure were ealeulated
from a one-term expansion (eq. (46)) and the
approximate virtual mass expressions (eqs. (33)
attd (34)).  This figure shows the theoretical and
experimental [requencies to he in good agreement,
from which it can be concluded that these
equations predict adequately the frequencies of
liquid-filled, pressurized cevlinders.

CONCLUDING REMARKS
Results are reported of an investigation of the

shell  vibration characteristies  of  pressurized,
thin-walled circular evlinders which are empty,

AERONAUTICS AND SPACE ADMINISTRATION

partly filled, or {ull of liquid. This investigation
consisted of a derivation of equations lor ealeula-
tion of natural frequencies of shell vibration and
an experimental determination of natural fre-
quencies, mode shapes, and damping of two
thin-walled eyvlinders  having  radius-thickness
ratios of 937 and 3,000.

The equations of motion for calculation of the
natural frequency are derived by use of a Rayleigh-
Lagrange procedure in which kinetic and potential
energy expressions are developed in terms of the
shell  displacements.  Shell  displacement forms
are then assumed, and the Lagrange equations
are applied to yield a set of simultaneous equations
from which natural frequencies are determined.

Comparisons of caleulated and experimental
[requencies show that the equations derived are
adequate for the prediction of the natural fre-
quencies of the eylinder.  For partlv filled evlinders
the results show that it is necessary to use more
than one term of the assumed displicenment series;
A two-ternt series is shown to give good agreement
with the experimental data of the present investi-
gation.  When the liquid depth is zero, the
equations reduce to a single, relatively simple
equation for frequency which has been derived
previously by Erie Reissner. 1t is shown that
this equation may be used for eadeulation of
frequencies of empty, pressurized or unpressurized
evlinders with either fixed or freely supported
ends. When the evhinders are filled with liquid,
a single term of the displucement series is shown
to give [requencies which agree well with the
experimental Mrequencies,

LancLey REsearcit CENTER,
NATIONAL AERONAUTICS AND NPACE ADMINISTRATION,
Lancrey Srariox, Hamerox, Val, February 23, 1902
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APPENDIX

APPROXIMATE VIRTUAL MASS COEFFICIENTS

Approximate expressions for the virtual-mass
coefficients of the partly filled cylinder, m,(s),
Mpe(s,k), are obtained by use of a virtual-mass
expression which was derived in reference 5 for
liquid-filled ecylinders.  Equations were derived
in reference 5 for the calculation of the natural
frequencies of vibration of a thin-walled cvlinder
full of inviseid, COJ]]prossihle fluid. Tt is shown
therein that the effects of the fluid on the shell
vibration frequencies can be described by adding
an equivalent fluid mass per unit area to the muss
of the shell.  When the fluid is incompressible,
the equivalent fluid mass m, is given by the
expression

m,= ";}“ 7a(\) (A1)

For the partly filled evlinder it is ussumed that

7,0 an(xo)u‘ (f)?f f cos® ne sin?’ “-'fff’v’

D) (}

ks

Upon evaluation of the integrals in equation (A4)
the kinetic energy of the fluid may be written
as

2 N .
L M (s) W(1)2
49 o

N
+§]mﬂc«-,mu;<z>m<t>] 45)

=g

where the virtual mass coefficients,
36

ma(s) and

an equivalent fluid mass per unit area, given by
equation (Al), is distributed over the wetted area
of the shell and is moving radially with the shell.
With this ussumption the kinetic energy of the
fluid can be obtained from the expression

27 4
’
7= 5
JoooJooo o~

(A2)

1 .
= mwradrde

where T, is the kinetic energy of the fluid, and

the radial velocity # is obtained from the radial
displacement
Mo A )
w=cos ne >, W,(#) sin 0 (A3)
$=0

With the substitution of the fluid muss (cq. (A1)
and the radial velocity from equation (A3) into
equation (A2), the following expression for the
kinetic energy can be obtained:

2 N N . 2% b . . Ao
p,a Z S ) W) Wit [ f cos? ne sin 2% gin ™! drde (A4)
=0 k=0 Jo Jo a o
mae(s,k) are:
.2
sin ==
m z*l('s') :j.n(x()) 1 - (:&6)

sin (A, —Ay) (’; sin ()\ +)\;)-
m rz('Q,A") :_fn()‘o)

()\ +)\A) -
(A7)

”70
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VIBRATIONS OF PRESSURIZED CYLINDERS

Comparison  shows that the virtual mass
coefficients given by equations (A6) and (A7)
are similar, respectively, to the first terms of the
so-called exact virtual mass coefficients given by
equations (31) and (32). The only difference is
the appearance of the term f,(A) In equations
(A6) and (A7) in place of the term £,(A,) in the
exact expression. This suggests that the first
terms of equations (31) and (32) be used as an
approximation to the virtual mass coeflicients.
The approximate virtual mass coeflicients thus
arrived at are

PARTLY FILLED WITH LIQUID 37
AW )
SN —

a

mvl(“) ifn(}\.\-) 1—- ‘))\b J (1\3)
,,.(,; —

and
sin (A, —A\p) j—[) sin (A g
Moa(s,h) = [, (N) | =y -
N—N) = (A A
a @
(A9)
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